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1 curves and surfaces

I Curves and Surfaces
vector spaces

Recall the definition of the inner product over a vector space V : def 1.1

1. ⟨u, v⟩ = ⟨v, u⟩ = ⟨v, u⟩ in R (where we’ll be in this class)

2. ⟨au + bw, v⟩ = a ⟨u, v⟩ + v ⟨w, v⟩

3. ⟨u, u⟩ ≥ 0, and = 0 ⇐⇒ u = 0

From this, we define the norm of u ∈ V to be ||u|| :=
√
⟨u, u⟩. This is well-defined, def 1.2

since ⟨u, u⟩ ≥ 0.
prop 1.1
Cauchy-Schwartz Inequality

∀u, v ∈ V , | ⟨u, v⟩ | ≤ ||u||||v||

prop 1.2
Triangle Inequality∀u, v ∈ V , ||u + v|| ≤ ||u|| + ||v||

The cross product of u, v ∈ R, with respect to R3, is the determinate of the follow- def 1.3

ing:

u × v :=

 î ĵ k̂
u1 u2 u3
v1 v2 v3


where u = ⟨u1, u2, u3⟩ and v = ⟨v1, v2, v3⟩. We observe the following two proper-
ties of the cross product in R3: prop 1.3

1. (u × v) • u = 0

2. ||u × v|| = ||u||||v|| sin(θ), where θ is the minimal angle found between u and
v. A conceptualization of this property is that “u-cross-v is equal to the
area created by the parallelogram bounded by u and v.”

Inner products are not just abstractly useful: by defining a norm on continuous
functions in C[0,1], with ⟨f , g⟩ =

∫
0,1f (x)g(x)dx, we yield inequalities that are

otherwise nontrivial via analysis:∣∣∣∣∣∣∣∣
1∫

0

f (x)g(x)dx

∣∣∣∣∣∣∣∣ ≤


1∫
0

f (x)2dx


2

+


1∫

0

g(x)2dx


2


1∫

0

(f (x) ± g(x))2dx


1
2

≤


1∫

0

f (x)2dx


1
2

+


1∫

0

g(x)2dx


1
2
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lines and planes

Define a line l(t) ∈ Rn to be a function from R → Rn of the form l(t) = P + td,def 1.4

with P , d ∈ Rn, t ∈ R. We call P the “point vector” and d the “direction vector”
An alternate form, with two points P , Q ∈ Rn, would be l(t) = (1− t)P + tQ, where
l(t) lies along the path between P and Q for t ∈ [0, 1].

proju(v), the projection of v onto u, is given bydef 1.5

(u • v)
v

||v||2

Distance between a point and line Using this definition, how an we find the
shortest path between a point R and a line l(t), which lies between P and Q?

Idea 1 We know the desired vector w = P R sin(θ), the angle between P R and P Q.
To find this value, note that ||P R × P Q|| = ||P R||||P Q|| sin(θ).

Idea 2 We can project R onto P Q, and then subtract this projection from P R.

Idea 3 We can minimize a distance function between R and a point on l, i.e. l(t).
Thus, we take mint∈R ||R − l(t)|| = α, and then take Rl(α) to be the shortest
path.

Idea 4 We can find when (R − l(t)) • d = 0.

Distance between 2 lines Consider two lines, l1 and l2, which do not intersect
but are not necessarily parallel. What is the minimal distance between l1 and l2?Sometimes called “skew

lines”
Idea 0 Conceptualize this problem as finding the distance between the parallel

planes defined by {l1, l2}.

Idea 1 We can minimize ||l1(t) − l2(s)|| (really, one should minimize the square to
make one’s life easier).

Idea 2 Pick any two points, say l1(T ) and l2(S), and project l1(T )l2(S) onto l1 × l2.

Idea 3 Minimize dist(l1(t), l2) for fixed t.

Idea 4 Find t and s such that [l1(t) − l2(s)] • d⃗1 = 0 and [l1(t) − l2(s)] • d⃗2 = 0

Idea 5 For lines l1, l2 with direction vectors d1, d2, let n = d1 × d2. Then calculate
||projn(l1(x1)− l2(x2))||, where we may choose any two points l1(x1) and l2(x2)
arbitrarily.

||u × v|| = ||u||||v|| sin(θ) gives the area of the parallelogram bounded by u and v.prop 1.4

A plane r(s, t) is a function [0, 1]2 → R3 defined by d1, d2 ∈ R3, two vectors lyingdef 1.6
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on the plane, and P ∈ R3, a point. In particular, r(s, t) = P + sd⃗1 + td⃗2. This is
called the parametric form.

The point-normal form of a plane is a function R2 → R3 given by a(x − x0) + def 1.7

b(y − y0) + c(z − z0) = 0, where n⃗ = ⟨a, b, c⟩ is a vector normal to the plane, and
P =

〈
x0, y0, z0

〉
is a point lying on the plane.

Distance between a point R and a plane r

Idea 1 Minimize ||R − r(s, t)|| (or the square)

Idea 2 ||projn⃗(P − R)||, where n⃗ and P are as given in the point-normal form.

transformations and parameterizations

The following table give general examples of linear transformations λ : Rn → Rm.

Dimension Linear Affine

n = 0 λ(0) = 0 λ(0) = P

n = 1 λ(t) = td⃗ λ(t) = P + td⃗

n = 2 λ(t, s) = td⃗1 + sd⃗2 λ(t, s) = P + td⃗1 + sd⃗2

n = 3 λ(t, s, r) = td⃗1 + sd⃗2 + rd⃗3 λ(t, s, r) = P + td⃗1 + sd⃗2 + rd⃗3

We also define the following important curves in R2:

Type Explicit Form Parametric Form

Ellipse x2 + y2 = 1 r(t) =
〈
t,
√

1 − t2
〉
t∈[−1,1]

= ⟨cos(t), sin(t)⟩t∈[−π,π]

Hyperbola x2 − y2 = 1 r(t) =
〈√

1 + t2, t
〉
t∈R

= ⟨cosh(t), sinh(t)⟩t∈R
Parabola x = y2

Double Cone x2 = y2

Any Function y = F(x) r(t) = ⟨t, F(t)⟩

Define a path in Rm to be a continuous function r : R→ Rm, e.g. [a, b]→ Rm. def 1.8

Define a curve in Rm to be the image of a path (i.e. a set of points in Rm). Remem- def 1.9

ber always the phrase “paths parameterize curves.” For example, the unit circle
curve is parameterized by the path r : R→ R2 given by r(t) = ⟨cos(t), sin(t)⟩.

Define the tangent line of r⃗ at a ∈ R to be an affine transformation l : R → Rm

satisfying the following:

l(t) = r(a) + (t − a)d⃗ : d⃗ , 0 and lim
t→a

||r(t) − l(t)||
|t − a|

= 0
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♠Examples♣e.g. 1.1

Consider the tangent to the unit circle at a point a ∈ R: we have r(a) = ⟨cos(a), sin(a)⟩:

l(t) = ⟨cos(t), sin(t)⟩ + (t − a) ⟨d1, d2⟩

Where ⟨d1, d2⟩ , 0. Consider now the limit:

lim
t→a

||r(t) − l(t)||
|t − a|

= lim
1
|t − a|

√
(cos(t) − cos(a) − (t − a)d1)2 + (sin(t) − sin(a) − (t − a)d2)2

= lim

√(
cos(t) − cos(a)

t − a
− d1

)2

+
(

sin(t) − sin(a)
t − a

− d2

)2

=
t→a

√
(− sin(a) − d1)2 + (cos(a) − d2)2 = 0

⇐⇒ (d1 = − sin(a)) ∧ (d2 = cos(a))

=⇒ l(t) = ⟨− sin(a), cos(a)⟩

differentiation and continuity

Given r⃗ : R→ Rn, the derivative of r⃗ at a ∈ R is a linear transformation λ⃗ : R→ Rndef 1.10

satisfying

lim
t→a

||r(t) − r(a) − λ(t − a)||
|t − a|

= 0 or equivalently lim
h→0

||r(a + h) − r(a) − λ(h)||
|h|

= 0

It is denoted Dr⃗a, and represented by the n × 1 matrix r ′(a). One may now rewrite
the tangent line in the form l(t) = r(a) + λ(t − a).

The arc length of a curve r(t) in t ∈ [a, b] is given bydef 1.11

s =

b∫
a

||r ′(t)||dt

An arc length parameterization of r(t) is some t = α(s) such that r(α(s)) has a unitdef 1.12

velocity vector, i.e. ||r ′(α(s))|| = 1. Alternatively, one could find an expression for
arc length, and then parameterize r(t) in terms of its arc length. The resultant
will be equivalent.

λ : Rn → Rm is continuous at a⃗ if, for any ε > 0, we can find δ > 0 such thatdef 1.13

||x⃗ − a⃗|| < δ =⇒ ||λ(x⃗) − λ(a⃗)|| < ε ∀x⃗ ∈ Rn

♠Examples♣e.g. 1.2
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We’ll do an arc length parameterization of a semicircle of radius 1 with its center at
the origin, i.e. y =

√
1 − x2. We get the natural parameterization r(t) =

〈
t,
√

1 − t2
〉
,

where t ∈ [−1,1]. We’d like to find a change of parameters t = α(s) such that
||r(α(s))|| = 1 and α′ ≥ 0.

r(α(s)) =
〈
α(s),

√
1 − α(s)2

〉
r ′(α(s)) =

〈
α′(s),

1
2

(1 − α(s)2)−
1
2 · (−2α(s)α′(s))

〉
= α′(s)

〈
1,

−α(s)√
1 − α(s)2

〉

Then 1 = ||r ′(α(s))|| = α′(s)

√
1 +

α(s)2

1 − α(s)2

=
α′(s)√

1 − α(s)2

Integrating with respect to s, we get s = arcsin(α(s)) = arcsin(t). Thus, t = sin(s),
and s ∈ [−π2 , π2 ], and we yield the parameterization ⟨sin(s), cos(s)⟩ : s ∈ [−π2 , π2 ].

surfaces

We note the following quadric surfaces:

Type Explicit Form

Ellipsoid x2 + y2 + z2 = 1

Elliptic Hyperboloid x2 + y2 − z2 = 1

Elliptic Paraboloids x2 + y2 − z2 = −1

Hyperbolic Paraboloids x = y2 − z2

Double Cones x2 = y2 + z2

A surface F(x, y) is called differentiable at (a, b) if there exists some linear transfor- def 1.14

mation λ : R2 → R such that

lim
(h,k)→(0,0)

|F(a + h, b + k) − F(a, b) − λ(h, k)|
|| ⟨h, k⟩ ||

= 0 or alternatively

lim
(x,y)→(a,b)

|F(x, y) − F(a, b) − λ(x − a, y − b)|
||
〈
x, y

〉
− ⟨a, b⟩

= 0

λ : R2 → R, as above, is called the derivative of F(x, y) at (a, b), and is denoted by def 1.15
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DF(a,b)
. It is a linear transformation, and may be represented by multiplication by

a 1 × 2 matrix [u, v] for u, v ∈ R.

♠Examples♣e.g. 1.3

Let F(x, y) = xy. We consider F at (a, b). Then

0 ≤ |F(a + h, b + k) − F(a, b) − λ(h, k)|
|| ⟨h, k⟩ ||

=
|(a + h)(b + k) − ab − (uk + vk)|

|| ⟨h, k⟩ ||

=
|bh + ak + hk − uh − vk|

|| ⟨h, k⟩ ||
=
|(b − u)h + (a − v)k + hk|

|| ⟨h, k⟩ ||

≤ |b − u||h|
|h|

+
|a − v||k|
|k|

+
|h||k|
|h|

since |h|, |k| ≤ || ⟨h, k⟩ ||

= |b − u| + |a − v| + |k| → |b − u| + |a − v|
= 0 when b = u, a = v

Thus, the desired limit is always ≥ and ≤ 0, so especially it is 0. Our derivative at
(a, b) is then λ(x, y) = bx + ay.

One may also find these coefficients as the partial derivative of F at (a, b), i.e.

∇F(a, b) =
〈
∂F
∂x

,
∂F
∂y

〉∣∣∣∣∣∣
(a,b)

This is called the gradient. Similarly, α(x, y) = F(a, b) + λ(x − a, y − b) is called thedef 1.16

affine approximation of F at (a, b), and is analogous to the tangent line of a curve r
at a.

1.1 Characterization of the Derivative

Let F⃗ : Rn → Rm. The derivative of F at a⃗, λ, exists and is unique if:

1. ∃ a linear transformation λ⃗ : Rn → Rm satisfying

lim
h⃗→0⃗

||F(a⃗ + h⃗) − F(a⃗) − λ(⃗h)||
||⃗h||

= 0

2. ∃ a linear transformation λ⃗ : Rn → Rm and a function E such that

F(a⃗ + h⃗) − F(a⃗) = λ(⃗h) + ||⃗h||E(⃗h)

and E(0) = 0 is continuous at 0.

If F : Rn → R is differentiable at a⃗, then all partial derivatives of F at a⃗ exist.prop 1.5

Furthermore, λ(a⃗) =
[
∂1F · · ·∂nF

]∣∣∣∣
a⃗
.Note that the full converse

is false (as a counterexample,
see that the partial derivative
of F =

√
|xy| exist at (0, 0), but

it is not differentiable there)
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1.2 Partial Converse

If all partial derivatives of F : Rn → R exist near a⃗ and are continuous at a⃗,
then F is differentiable at a⃗.

F : Rn → R is called continuously differentiable at a⃗ if all partial derivatives of F def 1.17

exist near a⃗ and are continuous at a⃗. We also say that F is C1 continuous.

If F : Rn → R is C1 continuous at a, then it is differentiable at a. prop 1.6

proof.This is a restating of Thm 1.2 using Def 1.17

Note that the converse to our partial converse is not true: i.e. if F is differentiable
at a⃗, it is not necessarily continuously differentiable at a⃗. Some counter examples
include F(x, y) = |y| and {F(x) = x2 sin(1

x ) s.t. x , 0 and 0 otherwise}.

♠Examples♣ e.g. 1.4

In Example 1.3, we prove (laboriously) that F(x, y) = xy is differentiable for all
(a, b). We can now use Thm 1.2 to show this result: the partial derivatives Fx = y
and Fy = x exist and are continuous ∀x, y ∈ R, so F is differentiable ∀x, y ∈ R.

We may represent the partial derivatives of F⃗ : Rn → Rm = ⟨F1, ..., Fm⟩ at a using def 1.18

the Jacobian matrix, denoted F′(a⃗) or Ja, and defined as follows:

F′(a) = Ja =
[
∂F
∂x1

· · · ∂F
∂xn

]∣∣∣∣∣∣
a

=


∇TF1
...

∇TFm


∣∣∣∣∣∣∣∣∣∣∣
a

=



∂F1

∂x1
· · · ∂F1

∂xn
...

. . .
...

∂Fm
∂x1

· · · ∂Fm
∂xn



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a

1.3 Chain Rule

Let f : Rn → Rm be differentiable at a⃗. Let g : Rm → Rl be differentiable at
b⃗ = f (a⃗). Then

h = g ◦ f : Rn → Rl is differentiable at a⃗ and Dh⃗a⃗ = Dg⃗b⃗ ◦ Df⃗a⃗

Furthermore, their Jacobians obey [h′(a)] = [g ′(b)][f ′(a)]

proof.
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Let λ be the derivative of f . Let t⃗, s⃗ be arbitrary. Then we have

f (a⃗ + t⃗) − f (a⃗) = λ(t⃗) + ||⃗t||ε1(t⃗)

where ε1 : Rn → Rm is continuous and 0⃗@0⃗. Similarly, for g:

g (⃗b + s⃗) − g (⃗b) = µ(s⃗) + ||s⃗||ε2(s⃗)

where µ is the derivative of g, and ε2 is as above. Our goal is to write h = g ◦ f
in the same manner. Let ν = µ ◦ λ. Then

h(a⃗ + t⃗) − h(a⃗) = g(f (a⃗ + t⃗)) − g(f (a⃗))

= g(f (a⃗) + λ(t⃗) + ||⃗t||ε1(t⃗)

:=s⃗

) − g(f (a⃗))

= µ(s⃗) + ||s⃗||ε2(s⃗)

= µ(λ(t⃗) + ||⃗t||ε1(t⃗)) + ||s⃗||ε2(s⃗)

= µ(λ(t⃗)) + ||⃗t||µ(ε1(t⃗)) + ||s⃗||ε2(s⃗)

= ν(t⃗) + ||⃗t||
(
µ(ε1(t⃗)) +

||s⃗||
||⃗t||

ε2(s⃗)
)

︸                    ︷︷                    ︸
=ε3(t⃗)

if t⃗ , 0

t⃗ , 0 =⇒ 0 ≤ ||ε3(t⃗)|| ≤ ||µ(ε1(t⃗))|| + ||λ(t⃗)|| + ||⃗t||||ε1(t⃗)||
||⃗t||

||ε2(s⃗)||

≤ M ||ε1(t⃗)|| + (L + ||ε1(t⃗)||)||ε2(s⃗)||
(whereλ(t⃗) ≤ L||x⃗|| and µ(x⃗)) ≤ M ||x⃗||)

=⇒ lim
t⃗→0

ε3(t⃗) = 0

♠Examples♣e.g. 1.5

1. Consider f (x, y) =
〈
x + y, x − y

〉
and g(x, y) = 1

4x
2 − 1

4y
2. Then h = g ◦ f :

R2 → R is given by
1
4

(x + y)2 − 1
4

(x − y)2

Let a⃗ = ⟨a1, a2⟩. Then f (a) = b = ⟨a1 + a2, a1 − a2⟩. What about the Jacobian
of f ?

f ′(a) =

∂1f1 ∂2f1

∂1f2 ∂2f2

∣∣∣∣∣∣
(a1,a2)

=

1 1

1 −1


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Similarly, for g we have

g ′(b) =
[
∂1g ∂2g

]∣∣∣∣
(a1+a2,a1−a2)

=
[

1
2 (a1 + a2) − 1

2 (a1 − a2)
]

Then, by the chain rule, we multiple these two matrices to yield

[
1
2 (a1 + a2) − 1

2 (a1 − a2)
]
·
1 1

1 −1

 =
[
a2 a1

]
One can (less) manually find that h = g ◦ f is xy, and conclude the same.

2. Let S be a surface in R3 given by F(x, y, z) = 0 (this is called a “level surface,”
e.g. xy − z = 0). Let P = (a, b, c) be a point on F, and let C be a curve in S
containing P , parameterized by r(t).

Denote r(t) =
〈
x(t), y(t), z(t)

〉
. Then g = F ◦ r = F(x(t), y(t), z(t)) = 0. By

chain rule, we have 0 = g ′(t0) = F′(P ) · r ′(t0), where we choose t0 such that
r(t0) = ⟨a, b, c⟩. Then, we observe that

0 = ∇F(P ) • v⃗(t0) =⇒ ∇F(P ) ⊥ v⃗(t0)

Where v⃗ = r ′ is the velocity vector of r. By considering all curves that satisfy
our construction C ⊂ S, we yield the tangent plane of S at P with normal
vector n⃗ = ∇F(P ). In particular, the point-normal form of the tangent plane
of a surface F at P = (a, b, c) is given by

∂xF(P )(x − a) + ∂yF(P )(y − b) + ∂zF(P )(z − c) = 0

3. Generally, we can consider Sn−1 ⊂ Rn of F : Rn → R. (This is called a
hypersurface). Suppose this is differentiable at P ∈ S. Let C ⊂ S be a curve
in S through P , parameterized by r : R→ Rn and differentiable at t0 with
r(t0) = P .

Then, by the chain rule, v(t0) ⊥ ∇F(P ). If v(t0) , 0, then the tangent line to
C at P has derivative r(t0). If ∇F(P ) , 0, then the tangent hyperplane to S
at P has a normal vector n = ∇F(P ).

Let Rn → R, a⃗, h⃗ ∈ Rn. Then the directional derivative of F along h⃗ at a⃗ is given by def 1.19

∂h⃗F(a⃗) = lim
t→0

F(a⃗ + th⃗) − F(a⃗)
t

For f : Rn → Rm and a⃗ ∈ Rn, ∂iF(a⃗) = ∂eiF(a⃗) is the partial derivative of F at a⃗ def 1.20
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along the ith direction. In particular, for n ≤ 3, ∂x = ∂î , ∂y = ∂ĵ , and ∂z = ∂ĵ .

Then, if F : Rn → Rm is differentiable at a⃗ ∈ Rn, thenprop 1.7

∂h⃗F(a⃗) = h⃗ • ∇F(a⃗) =
n∑
i=1

hi∂iF(a⃗)

Let f : Rn → Rm, a⃗, h⃗ ∈ Rn. By Def 1.19, we haveprop 1.8

∂h⃗f (a⃗) := lim
t→0

f (a⃗ + th⃗) − f (a⃗)
t

= lim
t→0

g(t) − g(0)
t

= g ′(0) g(t) := f (a⃗ + th⃗)

The iterated directional derivative on these parameters, denoted ∂i
h⃗
f (a⃗), is g(i)(0).

If f is i-times continuously differentiable at a⃗, then we can writeprop 1.9

∂i
h⃗
(a⃗) = (⃗h • ∇)if (a⃗)

Let F : Rn → R be differentiable, and let a⃗, h⃗ ∈ Rn, with h⃗ , 0. Thenprop 1.10
Mean Value Thm.

F(a⃗ + h⃗) − F(a⃗) = ∂h⃗F(ch⃗) = h⃗∇F(ch⃗) for some ch⃗ ∈ [a⃗, a⃗ + h⃗]

1.4 Mixed Partials are Equal

Let f : R2 → R, a⃗ = ⟨a1, a2⟩. Let ∂1f , ∂2∂1f be defined near a⃗, let ∂2∂1f be
continuous at a⃗, and let ∂2f (·, a2) be defined near a⃗.

=⇒ ∂1∂2f is defined at a⃗ and ∂1∂2f (a⃗) = ∂2∂1f (a⃗).

If f : R2 → R is C2 continuous near a⃗, then ∂1∂2f = ∂2∂1f at a⃗.prop 1.11

f : Rn → R is k-times continuously differentiable at a⃗ if all kth-order partial deriva-def 1.21

tives exist near a⃗ and are continuous at a⃗. We also say that f is Ck continuous.

If f is Ck continuous at a⃗, then its (k − 1)th order partial derivatives are C1prop 1.12

continuous at a⃗.

1.5 Multivariable Taylor’s Theorem

Let f : Rn → R be Ck continuous near some a⃗ ∈ Rn. For j ∈ [1, k], let αj (⃗h)
be defined by

αj (⃗h) =
1
j!
∂
j

h⃗
f (a⃗) =

1
j!

(⃗h • ∇)j f (a⃗) ∀

Let p(⃗h) = α1(⃗h) + ... + αk (⃗h). Then G : Rn → R by G(x⃗) = f (a⃗) + p(x⃗ − a⃗) is
the best degree k approximation of f at a⃗.
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II Integration
riemann integration

Let B be a box in Rn. Choose F : Rn → R which is bounded on the box. Then, def 2.1

informally, F is integrable if the limit of its Riemann summation is equivalent
across all orderings of tagged partitions.

By the extreme value theorem, if F is continuous on B, then F is bounded on prop 2.1

B.

2.1 Integrability Criterion on Boxes

If F is continuous on B, then F is integrable over B.

2.2 Fubini

Let B = [a1, b1] × · · · × [an, bn]. Let F : Rn → R be continuous on B. Then

∫
B

FdV n =

xn=bn∫
xn=an

· · ·


x1=b1∫
x1=a1

F(x1, ..., xn)dx1

 · · · dxn
Furthermore, the order of integration doesn’t matter.

b∫
a
g(x)dx = g(c)(b − a) where a < c < b. prop 2.2

proof.G(b)−G(a)
b−a = G′(c) = g(c) by the mean value theorem and the FTC.

Point-Set Topology

A set S ⊆ Rn has zero measure if ∀ε > 0 we can choose a set of open balls such that def 2.2

S ⊆
⋃

B(xi , εi) where
∑

vol(B(xi , εi)) < ε.

In general, hypersurfaces in Rn have zero measure. Thus, if F : Rn → R is
continuous except on a hypersurface, F is still integrable.

p⃗ ∈ Int(S) is called an interior point of S if ∃ε > 0 such that B(p⃗, ε) ⊆ S. def 2.3

1. If S ⊆ Rn has zero measure and S ′ ⊆ S, then S ′ has zero measure. prop 2.3

2. If S ⊆ Rn has zero measure, then S has no interior points.

Let S ⊆ Rn. Then def 2.4



vector calculus notes 12

1. Int(S), the interior of S, is the set of all interior points of S

2. S is called open if S = Int(S).

3. Sc, the compliment of S, is Rn \ S.

4. p ∈ Sc is called an exterior point of S if ∃ε > 0 with B(p, ε) ⊆ Sc.

5. Ext(S), the exterior of S, is the set of all exterior points of S.

6. S is closed if Sc = Ext(S).

7. p ∈ Rn is called a boundary point of S if p < Int(S) ∧ p < Ext(S).

8. The boundary of S, denoted ∂S, is the set of all boundary points of S.

9. S is bounded if ∃B with S ⊆ B ⊊ Rn.

S is closed ⇐⇒ Sc is open ⇐⇒ S contains its boundary.prop 2.4

2.3 Integrable ⇐⇒ Trivial Discontinuities

The set of discontinuities of F in B has zero measure ⇐⇒ F is integrable
over B.

Let D ⊆ Rn be closed and bounded. Let f : D → Rn be some function. f̂ : Rn → Rdef 2.5

defined by

f̂ (x) =

f (x) x ∈ D
0 o.w.

is called the trivial extension of f .

f is integrable over D if its trivial extension is integrable over a box B ⊇ D.prop 2.5

2.4 Integrability Criterion on Sets

Let D ⊆ Rn be closed and bounded, with a boundary that has zero measure.
Then, if f : D → R is continuous on D, then f is integrable.

proof. If f is continuous on D, then f̂ is continuous on both Int(D) and Ext(D) (for
any point in either of these sets, we can find epsilon balls centered at the
point and contained in the set—within these intervals f̂ = f ). Thus, since
D = Int(D)∪ Ext(D)∪ ∂D, the set of discontinuities of f̂ has at most measure
0. Hence, f̂ is integrable over any box containing D, and hence f is integrable
over D by Prop 2.5.
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D ⊆ R2 is called y-simple if, for a, b ∈ R and g1, g2 : R→ R continuous, we may def 2.6

write

D =
{
a ≤ x ≤ b

g1(x) ≤ y ≤ g2(x)

Similarly, D is x-simple if

D =
{
a ≤ y ≤ b

g1(y) ≤ x ≤ g2(y)

Note that, since x ∈ [a, b] is closed (hence compact), g1(x) and g2(x) are bounded.
We reason similarly for x-simple domains.

D ⊆ R2 is elementary if it is y- or x-simple. It is simple if it is both. def 2.7

2.5 Fubini

If D ⊆ Rn is elementary and f : D → R is continuous, then

• D is y-simple =⇒
�
D
f dA =

x=b∫
x=a

y=g2(x)∫
y=g1(x)

f (x, y)dydx

• D is x-simple =⇒
�
D
f dA =

y=b∫
y=a

x=g2(y)∫
x=g1(y)

f (x, y)dxdy

♠Examples♣ e.g. 2.1

1. Consider
�
D(1 + 2y)dA, where D is bounded by y = 2x2 and y = 1 + x2. We

first find the intersection between these two curves: 2x2 = 1+x2 =⇒ x = ±1.
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Then, by Thm 2.5 (D is y-simple), we write

�
D

(1 + 2y)dA =

x=1∫
x=−1

1+x2∫
2x2

(1 + 2y)dydx =

1∫
−1

y + y2
∣∣∣1+x2

2x2

=

1∫
−1

(1 + x2) + (1 + x2)2 − 2x2 − 4x4

=

1∫
−1

1 + x2 + 1 + x4 + 2x2 − 2x2 − 4x4

=

1∫
−1

−3x4 + x2 + 2 =
−3
5
x5 +

1
3
x3 + 2x

∣∣∣∣∣1−1
= 2
−3
5

+ 2
1
3

+ 4

= 2
(−9

15
+

5
15

+
30
15

)
=

52
15

2. Consider
�
DydA, where D is bounded by x = y − y3, x =

√
y − 1, x = −1,

and y = −1 (oof). By Thm 2.5 (y-simple):

We split this up into two x-simple graphs, one in y ∈ [−1,0], and one in
y ∈ [0, 1]. Then we have

�
D

= I1 + I2, with

I1 =

1∫
0

y−y3∫
√
y−1

ydxdy I2 =

1∫
−1

y−y3∫
−1

ydxdy

Computing this integral a hassle. Try it yourself.
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3. We may also flip the bounds of integration using Thm 2.5. For example,

consider
3∫

0

3∫
y

sin(x2)dxdy. This is a non-elementary integral to evaluate in x.

But observe that our bounds are equivalent to y ∈ [0, x] and x ∈ [0, 3], so we

may re-write this as
3∫

0

x∫
0

sin(x2)dydx. We pick up an x, not, after
integrating wrt y, so this is
easy to evaluate!

A set S ⊆ Rn is called path-connected if, for every a, b ∈ S, there exists a continuous def 2.8

mapping containing a and b (i.e., there exists a path between them).

In D ⊆ Rn, we call D elementary if it is closed, bounded, and both its interior and def 2.9

boundary are path-connected. This is distinct from
elementary-ness of D ⊆ R2,
which we characterized by y
and x simple-ness.

Let D,D∗ be elementary subsets of Rn. Let T : D∗ → D. We call T onto , or

def 2.10
surjective, if the whole of D is mapped to, i.e. ∀d∗ ∈ D∃d ∈ D : T (d) = d′.

Using the same notation, we call T one-to-one, or injective, if no two points share def 2.11

a mapping, i.e. ∀d∗1, d
∗
2 ∈ D∗, we have T (d∗1) = T (d∗2) =⇒ d∗1 = d∗2.

S ⊆ Rn is a hypersurface if, ∀s ∈ S, ∃ε > 0, an open set 0⃗ ∈ U , and a function def 2.12

T : U → B(s, ε) such that

• T is injective on Int(D∗) and also surjective

• T (U ∩ {s = ⟨x1, ..., xn⟩ : xn = 0}) = S ∩ B(s, ε)

T

B(s, ε)

U

S

For D ⊆ Rn and F integrable,
∫
D
FdV n =

∫
Int(D)

FdV n. prop 2.6

2.6 Change of Variables

Let T : D∗ → D be C1 and injective on Int(D∗). Let F : D → R be integrable
over D. Let [T ] be the Jacobian induced by T . Let F∗ : D∗ → R = F ◦ T . Then
F∗ is integrable over D∗ and∫

D

FdV =
∫
D∗

F∗|det(T )|dV
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♠Examples♣e.g. 2.2

In polar coordinates,
∫
D
FdA =

∫
D∗

F∗rdA. For this, see that the relevant Jacobian is

T ′ =

∂rx ∂θx

∂ry ∂θy

 =

cos(θ) −r sin(θ)

sin(θ) r cos(θ)

 =⇒ |det(T ′)| = |r | = r

Consider the area of the following parallelogram:

1 2 3

1

2

3

1 2 3 4

1

2

-1

−x
+ 2y

= 2

x +
y

=
4

x +
y

=
1

−x
+ 2y

= 1

u = x + y

v = −x + 2y

v

u

y

x

Then, x = 2u−v
3 and y = u+v

3 . Hence, we compute our Jacobian and conclude
that det(T ′) = 1

3 . However, we may also compute the determinate of the inverse’s
Jacobian, i.e. u = x + y and v = −x + 2y, which will yield 3, and invert the
result. Hence, since the area of the left rectangle is 9, we get an area of 3 for the
parallelogram.

2.7 Mean Value Theorem in Rn

Let F : D → R be integrable over an elementary region D ⊆ Rn. Let F :=∫
D
FdV 1

vol(D) be the mean value of F. Then

∃c ∈ D : F(c) = F
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III Vector Fields
regular paths

r⃗ : [a, b]→ Rn is called a regular path if it is C1 and ||r ′(t)|| > 0 over [a, b]. def 3.1

C ⊆ Rn is called a regular curve if it is the image of a regular path. def 3.2

If C is a regular curve, then there exists and unique arc length parameterization prop 3.1

ρ : [0, l]→ Rn of C.

A regular path r⃗ : [a, b] → Rn is simple if it is injective (except possibly at its def 3.3

endpoints).

A regular path r⃗ : [a, b]→ Rn is called closed if r(a) = r(b). def 3.4

A regular curve C ⊆ Rn is called simple or closed if it is the image of a simple or def 3.5

closed path, respectively.

Center of Mass

Regular curves have zero measure, and hence zero n-dimensional volume, but we
can measure 1-dimensional volume, i.e. length. Hence, vol1(C) :=

∫
C

1ds = l.

Let δ : D → R+ be an integrable density function. Then mass(D) =
∫
DδdV . The def 3.6

center of mass x⃗ ∈ D is given by

xi =
1

mass(D)

∫
D

xiδdV

The mean value theorem gives the fact that ∃c : δ(c) = δ, where δ = mass(D)
vol(D⃗)

.

Let C ⊆ Rn be a curve parameterized by r : [a, b] → Rn. Let δ : C → R+ be a prop 3.2

density function. Then

mass(C) =

b∫
a

δ(r(t))||r ′(t)||dt

proof.

mass(C) =
∫
C

δds =

l∫
0

δ(ρ(s))ds =
ch. of var’s

b∫
a

δ(r(t))||r ′(t)||dt

where ρ : [0, l]→ Rn is the arc length parameterization of C.
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If D = C, a curve in Rn, then the center of mass x⃗ of C with respect to δ : C → R+prop 3.3

is given by

xi =
1

mass(C)

b∫
a

ri(t) ◦ δ(r(t))||r ′(t)||dt

where r(t) = ⟨r1(t), ..., rn(t)⟩ : t ∈ [a, b] parameterizes C ⊆ Rn.

proof.

xi =


∫
C

xiδds

 1
mass(C)

=
1

mass(C)

b∫
a

ri(t) ◦ δ(r(t))||r ′(t)||dt

vector fields

All curves C ⊆ Rn henceforth are regular and simple.

An orientation on a regular, simple curve C is a continuous function T : C → Rndef 3.7

which gives the unit tangent vector to C.

There exist exactly two orientations on C ⊆ Rn, T : C → Rn and −T .prop 3.4

A vector field is a function F : Rn → Rn.def 3.8

Fix an orientation T on a curve C ⊆ Rn. The integral of F over C is given bydef 3.9

∫
C

F • T ds :=

l∫
0

(F ◦ ρ) • ρ′

where ρ is the arc length parameterization of C.

Under the conditions of Def 3.9, we haveprop 3.5

∫
C

F • T ds =

b∫
a

(F ◦ r(t)) • r ′dt

where r : [a, b]→ Rn is a parameterization of C.

♠Examples♣e.g. 3.1

Let F : R3 → R3 be defined by F(x, y, z) =
〈
2x, 2y, 2z

〉
= 2

〈
x, y, z

〉
. Hence, at any

point, the vector generated by F will go through the line between the origin and
that point (away).

We want to integrate over the triangle C ⊆ R3 bounded by (1, 0, 0), (0, 1, 0), (0, 0, 1).
We orient this path as (1, 0, 0)→ (0, 1, 0)→ (0, 0, 1).



19 vector fields

Then, we split C up into 3 parts (the lines traversing each point)

C1 = r1(t) ⟨1, 0, 0⟩ + t ⟨−1, 1, 0⟩
C2 = r2(t) = ⟨0, 1, 0⟩ + t ⟨0,−1, 1⟩
C3 = r3(t) = ⟨0, 0, 1⟩ + t ⟨1, 0,−1⟩

=⇒
∫
C1

F • T ds =

1∫
0

⟨2(1 − t), 2t, 2(0)⟩ • ⟨−1, 1, 0⟩ dt =

1∫
0

4t − 2dt

= [2t2 − 2t]1
0 = 0

By symmetry, the integral across C2, C3 will be the same, i.e. 3 · 0 = 0.

3.1 Line Integrals on Gradient Fields

Let U ⊆ Rn be open and ϕ : U → Rn be C1 continuous. Let C ⊆ U be a curve
with a parameterization r : [a, b]→ U and orientation T . Let A = r(a) and
B = r(b). Then ∫

C

∇ϕ • T ds = ϕ(B) − ϕ(A)

proof.∫
C

∇ϕ · T ds =

b∫
a

∇ϕ(r(t)) • r ′(t)dt

CR=

b∫
a

(ϕ ◦ r)′(t)dt FTC= [ϕ ◦ r]ba

= ϕ(r(b)) − ϕ(r(a)) = ϕ(B) − ϕ(A)

A vector field T is called unit tangent for a curve C ⊆ Rn if T = ⟨T1, T2⟩ is exactly def 3.10

the unit tangent vector to C (aka its orientation). Similarly, a vector field n is
called unit normal for C if n = ⟨T2,−T1⟩.

3.2 Jordan Curve Theorem

Let C ⊆ R2 be a curve. Then there exists an elementary region D ⊆ R2 such
that C is the boundary of D.

proof.
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The proof of this is beyond the scope of this course.

3.3 Green’s Theorem

Let D ⊆ U be an elementary region. Fix an orientation T = ⟨T1, T2⟩ on ∂D.
Let F : U → R2 be a C1 vector field. Then∫

∂D

F • T ds =
�
D

∂1F2 − ∂1F1dA =
�
D

curl2(F)dA

where curl2 = det

∂1 ∂2

F1 F2

. Let n = ⟨T2,−T1⟩. Then

∫
∂D

F • nds =
�
D

∂1F1 + ∂2F2 =
�
D

div2(F)dA

Conceptually, the curl of F at a point a⃗ gives how much “spinning” is occurring
about a⃗, and the divergence of F measures the tendency of nearby vectors to
“move away” from a⃗. (Or, toward, if negative).

Let U ⊆ Rn be open and ϕ : U → Rn be C2 continuous. Then, if F is a vector fielddef 3.11

and F = ∇ϕ, then F is called a gradient field.

A vector field F : Rm → Rn is conservative if ∂iFj = ∂jFi ∀i , j and F = ⟨F1, ..., Fn⟩.def 3.12

An open set U ⊆ Rn is called convex if all line segments between points in U aredef 3.13

contained in U .

3.4 Conservative ⇐⇒ Gradient: 2D

Let U ⊆ Rn be convex. Let F : U → R2 be a C1 vector field. Then

F is conservative ⇐⇒ F is a gradient field

proof. We show this for m = 2. Fix a ∈ U . For any x ∈ U , let [a, x] denote the line
segment from a to x (oriented). Define ϕ : U → R : x 7→

∫
[a,x]

F • T ds.

We claim that ∂1ϕ(x) = F1(x). An identical proof for F2 will establish F = ∇ϕ.
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Expanding

x = ⟨x1, x2⟩ =⇒ ∂1ϕ(x) = lim
h→0

ϕ(x1 + h, x2) − ϕ(x1, x2)
h

= lim
h→0

1
h


∫

[a,x+he1]

F • T ds −
∫

[a,x]

F • T ds

 by def.

= lim
h→0

1
h

∫
[x,x+he1]

F • T ds by Green

At this point, observe that curl(F) = ∂1F2 − ∂2F1 = 0, since F is conservative,
so consider C the curve bounded by a→ x + he1 → x→ a. Then∫

[x+he1,x]

+
∫

[x,a]

+
∫

[a,x+he1]

=
∫
C

F • T ds

�
D

curl(F) = 0

Then, continuing from above:

∂1ϕ(x) = lim
h→0

x1+h∫
x1

F1(t, x2)dt FTC= F1(x1, x2) = F1(x)

surfaces

Let D ⊆ R2 be an elementary region. Then ρ : D → R3 be called a regular, 2D def 3.14

parameterization if it is injective and ||∂1ρ × ∂2ρ|| > 0.

S ⊆ R3 is called a regular surface if it is closed, bounded, and ∀x ∈ S, ∃ε > 0 such def 3.15

that B(x, ε) ∩ S is the image of a 2D parameterization.

If S ⊆ R3 is the image of a regular 2D parameterization, it is a regular surface. prop 3.6

Let S be a regular surface with a parameterization ρ : D → R3 for some D ⊆ R2.
Then, for a scalar function ϕ : S → R, the integral of ϕ over S is given by�

S

ϕdσ =
�
D

(ϕ ◦ p)||∂1p × ∂2p||dA

Given a surface S ⊆ R3 which is path-connected, µ→ R3 is called an orientation def 3.16

representative if it is continuous and µ(a⃗) is nontrivial and normal to S at a⃗

S is orientable if an orientation representative exists. def 3.17

Two orientation representatives µ, ν for S are equivalent if µ(a⃗) • ν(a⃗) > 0 ∀a⃗ ∈ S. def 3.18
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If S is orientable, then it has exactly 2 distinct orientations O and O, and henceprop 3.7

two unit normal vector fields n⃗ and −n⃗, and 2 area elements dσ and −dσ .

Fix an orientation n⃗ on a regular surface S ⊆ R3, consisting of the unit normaldef 3.19

vector field. Let ρ : D → R3 be its 2D parameterization. Then�
S

F • ndσ =
�
D

(F ◦ ρ) • (∂1ρ × ∂2ρ)dA

where, in particular n = ∂1ρ × ∂2ρ. Otherwise, dot instead with ∂2p × ∂1p.

3.5 Stoke’s Theorem

Let U ⊆ R3 be open and S ⊆ U be a C2-regular surface. Let F : U → R3 be a
C1 vector field. Fix an orientation T for ∂S. Then∫

∂S

F⃗ • T⃗ ds =
�
S

curl3(F⃗) • ndS

where curl3(F⃗) denotes ∇ × F⃗, i.e.

det


î ĵ k̂

∂1 ∂2 ∂3

F1 F2 F3

 with F⃗ = ⟨F1, F2, F3⟩

3.6 Conservative ⇐⇒ Gradient, 3D

Let U ⊆ R3 be open and convex. Let F : U \ X → R3 be a C1 vector field,
where X is finite. Then

curl3(F) = 0 ⇐⇒ F = ∇ϕ

for some C2 function ϕ : U \ X → R.

We call a vector field G in R3 solenoidal if div(G) = 0.

3.7 Solenoidal ⇐⇒ curl3

Let U ⊆ R3 be open and convex. Let G : U → R3 be a C2 vector field. Then

div(G) = 0 ⇐⇒ G = curl3(H)

for some other C2 vector field H : U → R3.
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3.8 Gauss’s Theorem

Let U ⊆ R3 be open, R ⊆ U be elementary, and G : U → R3 be a C1 vector
field. Then �

∂R

G • ndσ =
�
R

div(G)dV

3.9 Stoke’s Theorem For Manifolds

Let U ⊆ Rn be open, S ⊆ U be a regular, C2 surface. Let ω be a C1 1-form
on U . Then ∫

∂S

ω =
�
S

dω

We also have the even more general form:
∫

∂M

ω =
∫
M

dω.
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