VECTOR CALCULUS NOTES

n icholas hayek

Lectures by Prof. Jean Pierre Mutanguha

CONTENTS

I Curves and Surfaces

vector spaces

Recall the definition of the *inner product* over a vector space *V*: DEF 1.1

- 1. $\langle u, v \rangle = \langle v, u \rangle = \langle v, u \rangle$ in R (where we'll be in this class)
- 2. $\langle au + bw, v \rangle = a \langle u, v \rangle + v \langle w, v \rangle$
- 3. $\langle u, u \rangle \ge 0$, and = 0 $\iff u = 0$

From this, we define the *norm* of $u \in V$ to be $||u|| := \sqrt{\langle u, u \rangle}$. This is well-defined, DEF 1.2 since $\langle u, u \rangle \geq 0$.

prop 1.1 Cauchy-Schwartz Inequality prop 1.2

$$
\forall u, v \in V, \|u + v\| \le \|u\| + \|v\|
$$

The *cross product* of $u, v \in \mathbb{R}$, with respect to \mathbb{R}^3 , is the determinate of the follow- $D \text{ }\mathrm{DEF}\ 1.3$ ing:

$$
u \times v := \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}
$$

where $u = \langle u_1, u_2, u_3 \rangle$ and $v = \langle v_1, v_2, v_3 \rangle$. We observe the following two properties of the cross product in \mathbb{R}^3

- 1. $(u \times v) \cdot u = 0$
- 2. $||u \times v|| = ||u|| ||v|| \sin(\theta)$, where θ is the minimal angle found between *u* and *v*. A conceptualization of this property is that " u -cross- v is equal to the area created by the parallelogram bounded by *u* and *v*."

Inner products are not just abstractly useful: by defining a norm on continuous functions in C[0, 1], with $\langle f, g \rangle = \int_{0,1}^{6} f(x)g(x)dx$, we yield inequalities that are otherwise nontrivial via analysis:

$$
\left| \int_{0}^{1} f(x)g(x)dx \right| \leq \left(\int_{0}^{1} f(x)^{2}dx \right)^{2} + \left(\int_{0}^{1} g(x)^{2}dx \right)^{2}
$$

$$
\left(\int_{0}^{1} (f(x) \pm g(x))^{2}dx \right)^{\frac{1}{2}} \leq \left(\int_{0}^{1} f(x)^{2}dx \right)^{\frac{1}{2}} + \left(\int_{0}^{1} g(x)^{2}dx \right)^{\frac{1}{2}}
$$

Triangle Inequality

: prop 1.3

-
-
-
- ∀*u, v* ∈ *V ,* |⟨*u, v*⟩| ≤ ||*u*||||*v*||

l ines and planes

Define a *line* $l(t) \in \mathbb{R}^n$ to be a function from $\mathbb{R} \to \mathbb{R}^n$ of the form $l(t) = P + td$, with $P, d \in \mathbb{R}^n$, $t \in \mathbb{R}$. We call P the "point vector" and d the "direction vector" An alternate form, with two points P , $Q \in \mathbb{R}^n$, would be $l(t) = (1-t)P + tQ$, where *l*(*t*) lies along the path between *P* and *Q* for $t \in [0, 1]$.

 $\text{def } 1.5$ (*v*), the *projection* of *v* onto *u*, is given by

lines["]

$$
(u \cdot v) \frac{v}{\|v\|^2}
$$

Distance between a point and line Using this definition, how an we find the shortest path between a point *R* and a line *l*(*t*), which lies between *P* and *Q*?

- *Idea 1* We know the desired vector $w = PR \sin(\theta)$, the angle between *PR* and *PQ*. To find this value, note that $||PR \times PQ|| = ||PR|| ||PQ|| \sin(\theta)$.
- *Idea 2* We can project *R* onto *P Q*, and then subtract this projection from *P R*.
- *Idea 3* We can minimize a distance function between *R* and a point on *l*, i.e. *l*(*t*). Thus, we take $\min_{t \in \mathbb{R}} ||R - l(t)|| = \alpha$, and then take $Rl(\alpha)$ to be the shortest path.

Idea 4 We can find when $(R - l(t)) \cdot d = 0$.

Distance between 2 lines Consider two lines, l_1 and l_2 , which do not intersect Sometimes called "skew but are not necessarily parallel. What is the minimal distance between l_1 and l_2 ?

- *Idea 0* Conceptualize this problem as finding the distance between the parallel planes defined by $\{l_1, l_2\}$.
- *Idea 1* We can minimize $||l_1(t) l_2(s)||$ (really, one should minimize the square to make one's life easier).
- *Idea 2* Pick any two points, say $l_1(T)$ and $l_2(S)$, and project $l_1(T)l_2(S)$ onto $l_1 \times l_2$.
- *Idea* 3 Minimize dist($l_1(t)$, l_2) for fixed *t*.
- *Idea 4* Find *t* and *s* such that $[l_1(t) l_2(s)] \cdot \vec{d_1} = 0$ and $[l_1(t) l_2(s)] \cdot \vec{d_2} = 0$
- *Idea 5* For lines l_1 , l_2 with direction vectors d_1 , d_2 , let $n = d_1 \times d_2$. Then calculate $||proj_n(l_1(x_1) - l_2(x_2)||$, where we may choose any two points $l_1(x_1)$ and $l_2(x_2)$ arbitrarily.

 $||u \times v|| = ||u|| ||v|| \sin(\theta)$ gives the area of the parallelogram bounded by *u* and *v*. DEF 1.6 A plane $r(s, t)$ is a function $[0, 1]^2 \to \mathbb{R}^3$ defined by $d_1, d_2 \in \mathbb{R}^3$, two vectors lying

on the plane, and $P \in \mathbb{R}^3$, a point. In particular, $r(s, t) = P + s\vec{d}_1 + t\vec{d}_2$. This is called the *parametric form*.

The *point-normal* form of a plane is a function $\mathbb{R}^2 \to \mathbb{R}^3$ given by $a(x - x_0) +$ definition $b(y - y_0) + c(z - z_0) = 0$, where $\vec{n} = \langle a, b, c \rangle$ is a vector normal to the plane, and $P = \langle x_0, y_0, z_0 \rangle$ is a point lying on the plane.

Distance between a point *R* and a plane *r*

Idea 1 Minimize $||R - r(s, t)||$ (or the square)

 \mathbb{R}^2

Idea 2 $\| \text{proj}_{\vec{n}}(P - R) \|$, where \vec{n} and P are as given in the point-normal form.

transformat ions and parameter izat ions

The following table give general examples of linear transformations $\lambda : \mathbb{R}^n \to \mathbb{R}^m$.

We also define the following important curves in \mathbb{R}^2 :

Define a *path* in \mathbb{R}^m to be a continuous function $r : \mathbb{R} \to \mathbb{R}^m$, e.g. $[a, b] \to \mathbb{R}$

*p*_{EF} 1.8</sub>

Define a *curve* in \mathbb{R}^m to be the image of a path (i.e. a set of points in \mathbb{R}^m). Remem- DEF 1.9 ber always the phrase "paths parameterize curves." For example, the unit circle curve is parameterized by the path $r : \mathbb{R} \to \mathbb{R}^2$ given by $r(t) = \langle \cos(t), \sin(t) \rangle$.

Define the *tangent line* of \vec{r} at $a \in \mathbb{R}$ to be an affine transformation $l : \mathbb{R} \to \mathbb{R}^m$ satisfying the following:

$$
l(t) = r(a) + (t - a)\vec{d} : \vec{d} \neq 0 \text{ and } \lim_{t \to a} \frac{||r(t) - l(t)||}{|t - a|} = 0
$$

^e.g. 1.1 ♠ *Examples* ♣

Consider the tangent to the unit circle at a point $a \in \mathbb{R}$: we have $r(a) = \langle \cos(a), \sin(a) \rangle$:

$$
l(t) = \langle \cos(t), \sin(t) \rangle + (t - a) \langle d_1, d_2 \rangle
$$

Where $\langle d_1, d_2 \rangle \neq 0$. Consider now the limit:

$$
\lim_{t \to a} \frac{||r(t) - l(t)||}{|t - a|} = \lim_{t \to a} \frac{1}{|t - a|} \sqrt{(\cos(t) - \cos(a) - (t - a)d_1)^2 + (\sin(t) - \sin(a) - (t - a)d_2)^2}
$$
\n
$$
= \lim_{t \to a} \sqrt{\left(\frac{\cos(t) - \cos(a)}{t - a} - d_1\right)^2 + \left(\frac{\sin(t) - \sin(a)}{t - a} - d_2\right)^2}
$$
\n
$$
= \lim_{t \to a} \sqrt{(-\sin(a) - d_1)^2 + (\cos(a) - d_2)^2} = 0
$$
\n
$$
\iff (d_1 = -\sin(a)) \land (d_2 = \cos(a))
$$
\n
$$
\implies l(t) = \langle -\sin(a), \cos(a) \rangle \quad \Box
$$

DIFFERENTIATION AND CONTINUITY

DEF 1.10 Given $\vec{r} : \mathbb{R} \to \mathbb{R}^n$, the *derivative* of \vec{r} at $a \in \mathbb{R}$ is a linear transformation $\vec{\lambda} : \mathbb{R} \to \mathbb{R}^n$ satisfying lim *t*→*a* $||r(t) - r(a) - \lambda(t - a)||$ $\frac{f(t) - f(t - \lambda)}{|t - a|} = 0$ or equivalently $\lim_{h \to 0}$ $||r(a+h) - r(a) - \lambda(h)||$ $\frac{h(n) - h(n+1)}{|h|} = 0$ It is denoted $D\vec{r}_a$, and represented by the $n \times 1$ matrix $r'(a)$. One may now rewrite the tangent line in the form $l(t) = r(a) + \lambda(t - a)$. DEF 1.11 The *arc length* of a curve $r(t)$ in $t \in [a, b]$ is given by $s =$ Z *b a* $||r'(t)||dt$ DEF 1.12 An *arc length parameterization* of $r(t)$ is some $t = \alpha(s)$ such that $r(\alpha(s))$ has a unit velocity vector, i.e. $||r'(\alpha(s))|| = 1$. Alternatively, one could find an expression for arc length, and then parameterize $r(t)$ in terms of its arc length. The resultant will be equivalent. DEF 1.13 $\lambda : \mathbb{R}^n \to \mathbb{R}^m$ is *continuous* at \vec{a} if, for any $\varepsilon > 0$, we can find $\delta > 0$ such that $||\vec{x} - \vec{a}|| < \delta \implies ||\lambda(\vec{x}) - \lambda(\vec{a})|| < \varepsilon \ \forall \vec{x} \in \mathbb{R}^n$ ^e.g. 1.2 ♠ *Examples* ♣

We'll do an arc length parameterization of a semicircle of radius 1 with its center at We'll do an arc length parameterization of a semicircle of radius 1 with its center at the origin, i.e. $y = \sqrt{1-x^2}$. We get the natural parameterization $r(t) = \left\langle t, \sqrt{1-t^2} \right\rangle$, where $t \in [-1, 1]$. We'd like to find a change of parameters $t = \alpha(s)$ such that $||r(\alpha(s))|| = 1$ and $\alpha' \geq 0$.

$$
r(\alpha(s)) = \left\langle \alpha(s), \sqrt{1 - \alpha(s)^2} \right\rangle
$$

$$
r'(\alpha(s)) = \left\langle \alpha'(s), \frac{1}{2}(1 - \alpha(s)^2)^{-\frac{1}{2}} \cdot (-2\alpha(s)\alpha'(s)) \right\rangle
$$

$$
= \alpha'(s) \left\langle 1, \frac{-\alpha(s)}{\sqrt{1 - \alpha(s)^2}} \right\rangle
$$

Then $1 = ||r'(\alpha(s))|| = \alpha'(s) \sqrt{1 + \frac{\alpha(s)^2}{1 - \alpha(s)^2}}$

$$
= \frac{\alpha'(s)}{\sqrt{1 - \alpha(s)^2}}
$$

Integrating with respect to *s*, we get $s = \arcsin(\alpha(s)) = \arcsin(t)$. Thus, $t = \sin(s)$, and $s \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, and we yield the parameterization $\langle \sin(s), \cos(s) \rangle : s \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

SURFACES

We note the following quadric surfaces:

A surface $F(x, y)$ is called *differentiable* at (a, b) if there exists some linear transfor- DEF 1.14 mation $\lambda : \mathbb{R}^2 \to \mathbb{R}$ such that

 $\lim_{(h,k)\to(0,0)}$ $|F(a + h, b + k) - F(a, b) - \lambda(h, k)|$ $\sqrt{\frac{n}{\|(h,k)\|}} = 0$ or alternatively $\lim_{(x,y)\to(a,b)}$ $|F(x, y) - F(a, b) - \lambda(x - a, y - b)|$ $\frac{\partial}{\partial (x, y) - \langle a, b \rangle} = 0$

 $\lambda : \mathbb{R}^2 \to \mathbb{R}$, as above, is called the *derivative* of $F(x, y)$ at (a, b) , and is denoted by DEF 1.15

 $D_{F_{(a,b)}}.$ It is a linear transformation, and may be represented by multiplication by a 1×2 matrix $[u, v]$ for $u, v \in \mathbb{R}$.

E.G. 1.3
$$
\bullet
$$
 Examples \bullet **—**

Let $F(x, y) = xy$. We consider *F* at (a, b) . Then

$$
0 \le \frac{|F(a+h, b+k) - F(a, b) - \lambda(h, k)|}{\|\langle h, k \rangle\|} = \frac{|(a+h)(b+k) - ab - (uk + vk)|}{\|\langle h, k \rangle\|}
$$

= $\frac{|bh + ak + hk - uh - vk|}{\|\langle h, k \rangle\|} = \frac{|(b-u)h + (a-v)k + hk|}{\|\langle h, k \rangle\|}$
 $\le \frac{|b-u||h|}{|h|} + \frac{|a-v||k|}{|k|} + \frac{|h||k|}{|h|}$ since $|h|, |k| \le \|\langle h, k \rangle\|$
= $|b - u| + |a - v| + |k| \rightarrow |b - u| + |a - v|$
= 0 when $b = u, a = v$

Thus, the desired limit is always \geq and \leq 0, so especially it is 0. Our derivative at (a, b) is then $\lambda(x, y) = bx + ay$.

One may also find these coefficients as the partial derivative of *F* at (*a, b*), i.e.

$$
\nabla F(a,b) = \left\langle \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{(a,b)}
$$

def 1.16 This is called the *gradient*. Similarly, *α*(*x, y*) = *F*(*a, b*) + *λ*(*x* − *a, y* − *b*) is called the *affine approximation* of *F* at (*a, b*), and is analogous to the tangent line of a curve *r* at *a*.

1.1 Characterization of the Derivative

Let \vec{F} : $\mathbb{R}^n \to \mathbb{R}^m$. The derivative of *F* at \vec{a} , λ , exists and is unique if:

1. \exists a linear transformation $\vec{\lambda}: \mathbb{R}^n \to \mathbb{R}^m$ satisfying

$$
\lim_{\vec{h}\to\vec{0}}\frac{\|F(\vec{a}+\vec{h})-F(\vec{a})-\lambda(\vec{h})\|}{\|\vec{h}\|}=0
$$

2. \exists a linear transformation $\vec{\lambda}: \mathbb{R}^n \to \mathbb{R}^m$ and a function *E* such that

$$
F(\vec{a} + \vec{h}) - F(\vec{a}) = \lambda(\vec{h}) + ||\vec{h}||E(\vec{h})
$$

and $E(0) = 0$ is continuous at 0.

PROP 1.5 *If* $F : \mathbb{R}^n \to \mathbb{R}$ **is differentiable at** \vec{a} **, then all partial derivatives of F at** \vec{a} **exist.** Note that the full converse Furthermore, $\lambda(\vec{a}) = [\partial_1 F \cdots \partial_n F] \Big|_{\vec{a}}$:
is *false* (as a counterexample,

is *false* (as a counterexample, see that the partial derivative of $F = \sqrt{|xy|}$ exist at (0, 0), but it is not differentiable there)

1.2 Partial Converse If all partial derivatives of $F : \mathbb{R}^n \to \mathbb{R}$ exist near \vec{a} and are continuous at \vec{a} , then *F* is differentiable at \vec{a} . $F: \mathbb{R}^n \to \mathbb{R}$ is called *continuously differentiable* at \vec{a} if all partial derivatives of F def 1.17 exist near \vec{a} and are continuous at \vec{a} . We also say that *F* is C^1 continuous. If $F: \mathbb{R}^n \to \mathbb{R}$ is C^1 continuous at *a*, then it is differentiable at *a*. *prop* 1.6 This is a restating of [Thm](#page-8-0) 1.2 using Def [1.17](#page-8-1) \Box proof. Note that the converse to our partial converse is *not* true: i.e. if *F* is differentiable at \vec{a} , it is not necessarily continuously differentiable at \vec{a} . Some counter examples include $F(x, y) = |y|$ and $\{F(x) = x^2 \sin(\frac{1}{x}) \text{ s.t. } x \neq 0 \text{ and } 0 \text{ otherwise}\}.$ ♠ *Examples* ♣ ^e.g. 1.4

In [Example](#page-7-0) 1.3, we prove (laboriously) that $F(x, y) = xy$ is differentiable for all (*a*, *b*). We can now use [Thm](#page-8-0) 1.2 to show this result: the partial derivatives $F_x = y$ and *F*_{*y*} = *x* exist and are continuous $\forall x, y \in \mathbb{R}$, so *F* is differentiable $\forall x, y \in \mathbb{R}$.

We may represent the partial derivatives of $\vec{F} : \mathbb{R}^n \to \mathbb{R}^m = \langle F_1,...,F_m \rangle$ at *a* using definition the *Jacobian* matrix, denoted $F'(\vec{a})$ or J_a , and defined as follows:

$$
F'(a) = J_a = \begin{bmatrix} \frac{\partial F}{\partial x_1} & \cdots & \frac{\partial F}{\partial x_n} \end{bmatrix}\Big|_a = \begin{bmatrix} \nabla^T F_1 \\ \vdots \\ \nabla^T F_m \end{bmatrix}\Big|_a = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}\Big|_a
$$

1.3 Chain Rule

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at \vec{a} . Let $g: \mathbb{R}^m \to \mathbb{R}^l$ be differentiable at $\vec{b} = f(\vec{a})$. Then

$$
h = g \circ f : \mathbb{R}^n \to \mathbb{R}^l
$$
 is differentiable at \vec{a} and $D\vec{h}_{\vec{a}} = D\vec{g}_{\vec{b}} \circ D\vec{f}_{\vec{a}}$

Furthermore, their Jacobians obey $[h'(a)] = [g'(b)][f'(a)]$

proof.

Let λ be the derivative of f . Let \vec{t}, \vec{s} be arbitrary. Then we have

$$
f(\vec{a} + \vec{t}) - f(\vec{a}) = \lambda(\vec{t}) + ||\vec{t}||\varepsilon_1(\vec{t})
$$

where $\varepsilon_1 : \mathbb{R}^n \to \mathbb{R}^m$ is continuous and $\vec{0} \vec{\omega} \vec{0}$. Similarly, for g :

$$
g(\vec{b} + \vec{s}) - g(\vec{b}) = \mu(\vec{s}) + ||\vec{s}||\varepsilon_2(\vec{s})
$$

where μ is the derivative of *g*, and ε_2 is as above. Our goal is to write $h = g \circ f$ in the same manner. Let $\nu = \mu \circ \lambda$. Then

$$
h(\vec{a} + \vec{t}) - h(\vec{a}) = g(f(\vec{a} + \vec{t})) - g(f(\vec{a}))
$$

\n
$$
= g(f(\vec{a}) + \lambda(\vec{t}) + ||\vec{t}||\varepsilon_1(\vec{t})) - g(f(\vec{a}))
$$

\n
$$
= \mu(\vec{s}) + ||\vec{s}||\varepsilon_2(\vec{s})
$$

\n
$$
= \mu(\lambda(\vec{t}) + ||\vec{t}||\varepsilon_1(\vec{t})) + ||\vec{s}||\varepsilon_2(\vec{s})
$$

\n
$$
= \mu(\lambda(\vec{t})) + ||\vec{t}||\mu(\varepsilon_1(\vec{t})) + ||\vec{s}||\varepsilon_2(\vec{s})
$$

\n
$$
= \nu(\vec{t}) + ||\vec{t}|| \left(\mu(\varepsilon_1(\vec{t})) + \frac{||\vec{s}||}{||\vec{t}||}\varepsilon_2(\vec{s})\right) \quad \text{if } \vec{t} \neq 0
$$

\n
$$
= \varepsilon_3(\vec{t})
$$

\n
$$
\vec{t} \neq 0 \implies 0 \le ||\varepsilon_3(\vec{t})|| \le ||\mu(\varepsilon_1(\vec{t}))|| + \frac{||\lambda(\vec{t})|| + ||\vec{t}||||\varepsilon_1(\vec{t})||}{||\vec{t}||}
$$

\n
$$
\le M||\varepsilon_1(\vec{t})|| + (L + ||\varepsilon_1(\vec{t})||)||\varepsilon_2(\vec{s})||
$$

\n(where $\lambda(\vec{t}) \le L||\vec{x}||$ and $\mu(\vec{x})) \le M||\vec{x}||$)
\n
$$
\implies \lim_{\vec{t} \to 0} \varepsilon_3(\vec{t}) = 0 \quad \Box
$$

^e.g. 1.5 ♠ *Examples* ♣

1. Consider
$$
f(x, y) = \langle x + y, x - y \rangle
$$
 and $g(x, y) = \frac{1}{4}x^2 - \frac{1}{4}y^2$. Then $h = g \circ f$:
\n
$$
\mathbb{R}^2 \to \mathbb{R}
$$
 is given by
\n
$$
\frac{1}{4}(x + y)^2 - \frac{1}{4}(x - y)^2
$$
\nLet $\vec{a} = \langle a_1, a_2 \rangle$. Then $f(a) = b = \langle a_1 + a_2, a_1 - a_2 \rangle$. What about the Jacobian
\nof f ?
\n
$$
f'(a) = \begin{bmatrix} \frac{\partial_1 f_1}{\partial_1 f_2} & \frac{\partial_2 f_1}{\partial_2 f_2} \end{bmatrix}\Big|_{(a_1, a_2)} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
$$

Similarly, for *g* we have

$$
g'(b) = \begin{bmatrix} \partial_1 g & \partial_2 g \end{bmatrix}\Big|_{(a_1 + a_2, a_1 - a_2)} = \begin{bmatrix} \frac{1}{2}(a_1 + a_2) - \frac{1}{2}(a_1 - a_2) \end{bmatrix}
$$

Then, by the chain rule, we multiple these two matrices to yield

$$
\left[\frac{1}{2}(a_1+a_2)-\frac{1}{2}(a_1-a_2)\right]\cdot\begin{bmatrix}1&1\\1&-1\end{bmatrix}=\begin{bmatrix}a_2&a_1\end{bmatrix}
$$

One can (less) manually find that $h = g \circ f$ is *xy*, and conclude the same.

2. Let *S* be a surface in R^3 given by $F(x, y, z) = 0$ (this is called a "level surface," e.g. $xy - z = 0$). Let $P = (a, b, c)$ be a point on *F*, and let *C* be a curve in *S* containing *P* , parameterized by *r*(*t*).

Denote $r(t) = \langle x(t), y(t), z(t) \rangle$. Then $g = F \circ r = F(x(t), y(t), z(t)) = 0$. By chain rule, we have $0 = g'(t_0) = F'(P) \cdot r'(t_0)$, where we choose t_0 such that $r(t_0) = \langle a, b, c \rangle$. Then, we observe that

$$
0 = \nabla F(P) \cdot \vec{v}(t_0) \implies \nabla F(P) \perp \vec{v}(t_0)
$$

Where \vec{v} = r' is the velocity vector of r . By considering all curves that satisfy our construction $C \subset S$, we yield the tangent plane of S at P with normal vector $\vec{n} = \nabla F(P)$. In particular, the point-normal form of the tangent plane of a surface *F* at $P = (a, b, c)$ is given by

$$
\partial_x F(P)(x-a) + \partial_y F(P)(y-b) + \partial_z F(P)(z-c) = 0
$$

3. Generally, we can consider $S^{n-1} \subset \mathbb{R}^n$ of $F : \mathbb{R}^n \to \mathbb{R}$. (This is called a *hypersurface*). Suppose this is differentiable at *P* ∈ *S*. Let *C* ⊂ *S* be a curve in *S* through *P*, parameterized by $r : \mathbb{R} \to \mathbb{R}^n$ and differentiable at t_0 with $r(t_0) = P$.

Then, by the chain rule, $v(t_0) \perp \nabla F(P)$. If $v(t_0) \neq 0$, then the tangent line to *C* at *P* has derivative $r(t_0)$. If $\nabla F(P) \neq 0$, then the tangent hyperplane to *S* at *P* has a normal vector $n = \nabla F(P)$.

Let $\mathbb{R}^n \to \mathbb{R}$, \vec{a} , $\vec{h} \in \mathbb{R}^n$. Then the *directional derivative* of *F* along \vec{h} at \vec{a} is given by DEF 1.19

$$
\partial_{\vec{h}} F(\vec{a}) = \lim_{t \to 0} \frac{F(\vec{a} + t\vec{h}) - F(\vec{a})}{t}
$$

For $f: \mathbb{R}^n \to \mathbb{R}^m$ and $\vec{a} \in \mathbb{R}^n$, $\partial_i F(\vec{a}) = \partial_{e_i} F(\vec{a})$ is the *partial derivative* of *F* at \vec{a} definition

along the *i*th direction. In particular, for $n \le 3$, $\partial_x = \partial_{\hat{i}}$, $\partial_y = \partial_{\hat{j}}$, and $\partial_z = \partial_{\hat{j}}$. PROP 1.7 Then, if $F : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\vec{a} \in \mathbb{R}^n$, then

$$
\partial_{\vec{h}} F(\vec{a}) = \vec{h} \cdot \nabla F(\vec{a}) = \sum_{i=1}^{n} h_i \partial_i F(\vec{a})
$$

prop 1.12

PROP 1.8 **Let** $f : \mathbb{R}^n \to \mathbb{R}^m$, $\vec{a}, \vec{h} \in \mathbb{R}^n$. By <u>Def 1.19</u>, we have

$$
\partial_{\vec{h}} f(\vec{a}) := \lim_{t \to 0} \frac{f(\vec{a} + t\vec{h}) - f(\vec{a})}{t} = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = g'(0) \qquad g(t) := f(\vec{a} + t\vec{h})
$$

The *iterated directional derivative* on these parameters, denoted *∂ i* $\frac{i}{\hbar}f(\vec{a})$, is $g^{(i)}(0)$.

PROP 1.9 If *f* is *i*-times continuously differentiable at \vec{a} , then we can write

∂ i $J_{\vec{h}}^i(\vec{a}) = (\vec{h} \cdot \nabla)^i f(\vec{a})$

Let $f : \mathbb{R}^2 \to \mathbb{R}$, $\vec{a} = \langle a_1, a_2 \rangle$. Let $\partial_1 f$, $\partial_2 \partial_1 f$ be defined near \vec{a} , let $\partial_2 \partial_1 f$ be continuous at \vec{a} , and let $\partial_2 f(\cdot, a_2)$ be defined near \vec{a} .

 $\implies \partial_1 \partial_2 f$ is defined at \vec{a} and $\partial_1 \partial_2 f(\vec{a}) = \partial_2 \partial_1 f(\vec{a})$.

PROP 1.11 **continuous near** *a*, then $\partial_1 \partial_2 f = \partial_2 \partial_1 f$ at *a*.

DEF 1.21 $f: \mathbb{R}^n \to \mathbb{R}$ is *k*-times continuously differentiable at \vec{a} if all k^{th} -order partial derivatives exist near \vec{a} and are continuous at \vec{a} . We also say that f is C^k *continuous*.

> If *f* is C^k continuous at \vec{a} , then its $(k-1)^{th}$ order partial derivatives are C^1 continuous at \vec{a} .

1.5 Multivariable Taylor's Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be C^k continuous near some $\vec{a} \in \mathbb{R}^n$. For $j \in [1, k]$, let $\alpha_j(\vec{h})$ be defined by $\alpha_j(\vec{h}) = \frac{1}{j!} \partial_{\bar{h}}^j$ $J_{\vec{h}}^j f(\vec{a}) = \frac{1}{j!} (\vec{h} \cdot \nabla)^j f(\vec{a}) \quad \forall$ Let $p(\vec{h}) = \alpha_1(\vec{h}) + ... + \alpha_k(\vec{h})$. Then $G : \mathbb{R}^n \to \mathbb{R}$ by $G(\vec{x}) = f(\vec{a}) + p(\vec{x} - \vec{a})$ is

the best degree *k* approximation of f at \vec{a} .

II Integration

r iemann integrat ion

Let *B* be a box in \mathbb{R}^n . Choose $F : \mathbb{R}^n \to \mathbb{R}$ which is bounded on the box. Then, DEF 2.1 informally, *F* is *integrable* if the limit of its Riemann summation is equivalent across all orderings of tagged partitions.

By the extreme value theorem, if *F* is continuous on B, then *F* is bounded on prop 2.1 \mathcal{B} .

2.1 Integrability Criterion on Boxes

2.2 Fubini Let $\mathcal{B} = [a_1, b_1] \times \cdots \times [a_n, b_n]$. Let $F : \mathbb{R}^n \to \mathbb{R}$ be continuous on \mathcal{B} . Then $\sqrt{2}$ B $F dV^n =$ $\int_{0}^{x_n=b_n}$ *xn*=*aⁿ* · · · $\int \frac{x_1=b_1}{\sqrt{2}}$ $\overline{\mathbb{C}}$ *x*1=*a*¹ $F(x_1, ..., x_n)dx_1$ $\overline{}$ $\begin{array}{c} \n\downarrow \\ \n\downarrow \n\end{array}$ $\cdots dx_n$

Furthermore, the order of integration doesn't matter.

$$
\int_{a}^{b} g(x)dx = g(c)(b-a) \text{ where } a < c < b.
$$

 $G(b)-G(a) = C'(a) - c(a)$ by the mean value theorem and the ETC FROOF. *b*^{−*G*(*a*)} = *G*′(*c*) = *g*(*c*) by the mean value theorem and the FTC.

Point-Set Topology

A set $S \subseteq \mathbb{R}^n$ has *zero measure* if $\forall \varepsilon > 0$ we can choose a set of open balls such that per 2.2 $S \subseteq \bigcup B(x_i, \varepsilon_i)$ where $\sum \text{vol}(B(x_i, \varepsilon_i)) < \varepsilon$.

In general, hypersurfaces in \mathbb{R}^n have zero measure. Thus, if $F: \mathbb{R}^n \to \mathbb{R}$ is continuous except on a hypersurface, *F* is still integrable.

 $\vec{p} \in \text{Int}(S)$ is called an *interior point* of *S* if $\exists \varepsilon > 0$ such that $B(\vec{p}, \varepsilon) \subseteq S$. DEF 2.3

- 1. If *S* ⊆ \mathbb{R}^n has zero measure and *S*' ⊆ *S*, then *S*' has zero measure. prop 2.3
- 2. If $S \subseteq \mathbb{R}^n$ has zero measure, then *S* has no interior points.

Let $S \subseteq \mathbb{R}^n$. Then $DEF 2.4$

b

- 4. $p \in S^c$ is called an *exterior point* of *S* if $\exists \varepsilon > 0$ with $B(p, \varepsilon) \subseteq S^c$.
- 5. Ext(*S*), the *exterior* of *S*, is the set of all exterior points of *S*.
- 6. *S* is *closed* if $S^c = \text{Ext}(S)$.

2. *S* is called *open* if $S = \text{Int}(S)$.

3. S^c , the *compliment of S*, is $\mathbb{R}^n \setminus S$.

- *7*. *p* ∈ \mathbb{R}^n is called a *boundary point* of *S* if *p* ∉ Int(*S*) ∧ *p* ∉ Ext(*S*).
- 8. The *boundary* of *S*, denoted *∂S*, is the set of all boundary points of *S*.
- 9. *S* is *bounded* if $\exists \mathcal{B}$ with $S \subseteq \mathcal{B} \subsetneq \mathbb{R}^n$.
- **PROP 2.4** S is closed $\iff S^c$ is open $\iff S$ contains its boundary.

2.3 Integrable \Longleftrightarrow Trivial Discontinuities

The set of discontinuities of *F* in *B* has zero measure \iff *F* is integrable over B.

DEF 2.5 Let $\mathcal{D} \subseteq \mathbb{R}^n$ be closed and bounded. Let $f: \mathcal{D} \to \mathbb{R}^n$ be some function. $\hat{f}: \mathbb{R}^n \to \mathbb{R}$ defined by

$$
\hat{f}(x) = \begin{cases} f(x) & x \in \mathcal{D} \\ 0 & \text{o.w.} \end{cases}
$$

is called the *trivial extension of f* .

PROP 2.5 *f* is integrable over D if its trivial extension is integrable over a box $B \supseteq D$.

2.4 Integrability Criterion on Sets

Let $D \subseteq \mathbb{R}^n$ be closed and bounded, with a boundary that has zero measure. Then, if $f : \mathcal{D} \to \mathbb{R}$ is continuous on \mathcal{D} , then f is integrable.

PROOF. If *f* is continuous on D, then \hat{f} is continuous on both Int(D) and Ext(D) (for any point in either of these sets, we can find epsilon balls centered at the point and contained in the set—within these intervals $\hat{f} = f$). Thus, since $D = Int(D) \cup Ext(D) \cup \partial D$, the set of discontinuities of \hat{f} has at most measure 0. Hence, \hat{f} is integrable over any box containing D , and hence f is integrable over D by [Prop](#page-13-0) 2.5. \Box

 $\mathcal{D} \subseteq \mathbb{R}^2$ is called *y-simple* if, for $a, b \in \mathbb{R}$ and $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ continuous, we may define write

$$
\mathcal{D} = \begin{cases} a \le x \le b \\ g_1(x) \le y \le g_2(x) \end{cases}
$$

Similarly, D is *x*-*simple* if

$$
\mathcal{D} = \begin{cases} a \le y \le b \\ g_1(y) \le x \le g_2(y) \end{cases}
$$

Note that, since $x \in [a, b]$ is closed (hence compact), $g_1(x)$ and $g_2(x)$ are bounded. We reason similarly for *x*-simple domains.

 $\mathcal{D} \subseteq \mathbb{R}^2$ is *elementary* if it is *y*- or *x*-simple. It is *simple* if it is both. DEF 2.7

2.5 Fubini If $D \subseteq \mathbb{R}^n$ is elementary and $f : D \to \mathbb{R}$ is continuous, then • \mathcal{D} is *y*-simple \implies \blacksquare $\tilde{\mathcal{D}}$ *f dA* = $x=b$ *x*=*a y*=*g*² (*x*) Ī *y*=*g*¹ (*x*) *f* (*x, y*)*dydx* • D is *x*-simple \implies \parallel $\tilde{\bar{D}}$ *f dA* = *y*=*b* R *y*=*a x*=*g*² (*y*) R *x*=*g*¹ (*y*) *f* (*x, y*)*dxdy* \bullet *Examples* \bullet **Examples** \bullet **E.g. 2.1**

1. Consider $\int_{-\infty}^{\infty} \int_{0}^{y} \int_{0}^{y} f(x) dx$, where *D* is bounded by $y = 2x^2$ and $y = 1 + x^2$. We first find the intersection between these two curves: $2x^2 = 1 + x^2 \implies x = \pm 1$.

Then, by [Thm](#page-14-0) 2.5 (D is *y*-simple), we write

$$
\iint_{D} (1+2y)dA = \int_{x=-1}^{x=1} \int_{2x^{2}}^{1+x^{2}} (1+2y)dydx = \int_{-1}^{1} y + y^{2} \Big|_{2x^{2}}^{1+x^{2}}
$$

\n
$$
= \int_{-1}^{1} (1+x^{2}) + (1+x^{2})^{2} - 2x^{2} - 4x^{4}
$$

\n
$$
= \int_{-1}^{1} 1 + x^{2} + 1 + x^{4} + 2x^{2} - 2x^{2} - 4x^{4}
$$

\n
$$
= \int_{-1}^{1} -3x^{4} + x^{2} + 2 = \frac{-3}{5}x^{5} + \frac{1}{3}x^{3} + 2x \Big|_{-1}^{1} = 2\frac{-3}{5} + 2\frac{1}{3} + 4
$$

\n
$$
= 2\left(\frac{-9}{15} + \frac{5}{15} + \frac{30}{15}\right) = \frac{52}{15}
$$

2. Consider $\int \int p y dA$, where *D* is bounded by $x = y - y^3$, $x =$ $\sqrt{y} - 1, x = -1,$ and $y = -1$ (OOF). By [Thm](#page-14-0) 2.5 (*y*-simple):

We split this up into two *x*-simple graphs, one in $y \in [-1, 0]$, and one in *y* ∈ [0, 1]. Then we have \parallel $\iint\limits_{\mathcal{D}}$ = *I*₁ + *I*₂, with

$$
I_1 = \int_{0}^{1} \int_{\sqrt{y}-1}^{y-y^3} y dx dy \qquad I_2 = \int_{-1}^{1} \int_{-1}^{y-y^3} y dx dy
$$

Computing this integral a hassle. Try it yourself.

3. We may also flip the bounds of integration using [Thm](#page-14-0) 2.5. For example, 3 ³
| consider \int_0^{3} 0 *y*
But observe that our bounds are equivalent to *y* ∈ [0, *x*] and *x* ∈ [0, 3], so we sin(*x* 2)*dxdy*. This is a non-elementary integral to evaluate in *x*. may re-write this as $\int\limits^{3}$ 0 \int 0 $\sin(x^2)$

A set $S \subseteq \mathbb{R}^n$ is called *path-connected* if, for every $a, b \in S$, there exists a continuous definition mapping containing *a* and *b* (i.e., there exists a path between them).

In $D \subseteq \mathbb{R}^n$, we call *D elementary* if it is closed, bounded, and both its interior and DEF 2.9 boundary are path-connected. This is distinct from the boundary are path-connected.

Let $\mathcal{D}, \mathcal{D}^*$ be elementary subsets of \mathbb{R}^n . Let $T : \mathcal{D}^* \to \mathcal{D}$. We call T *onto* , or *surjective*, if the whole of D is mapped to, i.e. $\forall d^* \in D \exists d \in D$: $T(d) = d'$. and *x* sim per 2.10

Using the same notation, we call *T* one-to-one, or *injective*, if no two points share per 2.11 a mapping, i.e. ∀*d* ∗ [∗]₁, *d*[∗]₂ ∈ *D*[∗], we have *T*(*d*[∗]₁</sup> f_1^*) = $T(d_2^*)$ \vec{a}_2^* \implies $\vec{a}_1^* = \vec{a}_2^*$ $_{2}^{*}$.

S ⊆ \mathbb{R}^n is a *hypersurface* if, $\forall s \in S$, $\exists \varepsilon > 0$, an open set $\vec{0} \in U$, and a function definition $T: U \rightarrow B(s, \varepsilon)$ such that

B(*s, ε*)

 \int *FdVⁿ*

S

- *T* is injective on Int(D[∗]) and also surjective
- *T* (*U* ∩ {*s* = ⟨*x*1*, ..., xn*⟩ : *xⁿ* = 0}) = *S* ∩ *B*(*s, ε*)

For $\mathcal{D} \subseteq \mathbb{R}^n$ and *F* integrable, $\int F dV^n =$

Let $T: \mathcal{D}^* \to \mathcal{D}$ be C^1 and injective on $Int(\mathcal{D}^*)$. Let $F: \mathcal{D} \to \mathbb{R}$ be integrable over D. Let [T] be the Jacobian induced by T . Let $F^* : \mathcal{D}^* \to \mathbb{R} = F \circ T$. Then *F*^{*} is integrable over \overrightarrow{D} ^{*} and

 $Int(D)$

T

U

 $\check{\mathcal{D}}$

$$
\int_{D} F dV = \int_{D^*} F^* |\det(T)| dV
$$

)*dydx*. We pick up an *x*, not, after integrating WRT y , so this is easy to evaluate!

elementary-ness of $\mathcal{D} \subseteq \mathbb{R}^2$, which we characterized by *y* and x simple-ness.
DEF 2.10

. prop 2.6

$$
E.G. 2.2 \qquad \qquad \bullet \text{ Examples} \clubsuit
$$

In polar coordinates, \vert $\check{\mathcal{D}}$ $FdA =$ D∗ *F* ∗ *rdA*. For this, see that the relevant Jacobian is

$$
T' = \begin{bmatrix} \partial_r x & \partial_\theta x \\ \partial_r y & \partial_\theta y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{bmatrix} \implies |\det(T')| = |r| = r
$$

Consider the area of the following parallelogram:

Then, $x = \frac{2u-v}{3}$ and $y = \frac{u+v}{3}$. Hence, we compute our Jacobian and conclude that $det(T') = \frac{1}{3}$. However, we may also compute the determinate of the *inverse's* Jacobian, i.e. $u = x + y$ and $v = -x + 2y$, which will yield 3, and invert the result. Hence, since the area of the left rectangle is 9, we get an area of 3 for the parallelogram.

2.7 Mean Value Theorem in R *n*

Let $F: \mathcal{D} \to \mathbb{R}$ be integrable over an elementary region $\mathcal{D} \subseteq \mathbb{R}^n$. Let $\overline{F} :=$ R $\check{\mathcal{D}}$ $FdV\frac{1}{\mathrm{vol}(\mathcal{D})}$ be the mean value of *F*. Then

$$
\exists c \in \mathcal{D} : F(c) = \overline{F}
$$

C

III Vector Fields

regular paths

 $C \subseteq \mathbb{R}^n$ is called a *regular curve* if it is the image of a regular path. DEF 3.2

If $\mathcal C$ is a regular curve, then there exists and unique arc length parameterization prop 3.1 $\rho : [0, l] \to \mathbb{R}^n$ of C.

A regular path \vec{r} : $[a, b] \rightarrow \mathbb{R}^n$ is *simple* if it is injective (except possibly at its DEF 3.3) endpoints).

A regular path \vec{r} : $[a, b] \rightarrow \mathbb{R}^n$ is called *closed* if $r(a) = r(b)$. DEF 3.4

A regular curve $C \subseteq \mathbb{R}^n$ is called *simple* or *closed* if it is the image of a simple or DEF 3.5 closed path, respectively.

Center of Mass

Regular curves have zero measure, and hence zero *n*-dimensional volume, but we *can* measure 1-dimensional volume, i.e. length. Hence, $vol_1(C) := \int 1 ds = l$.

Let $\delta: \mathcal{D} \to \mathbb{R}_+$ be an integrable density function. Then mass(\mathcal{D}) = $\int \mathcal{D} \delta dV$. The def 3.6 *center of mass* $\vec{x} \in \mathcal{D}$ *is given by*

$$
x_i = \frac{1}{\text{mass}(\mathcal{D})} \int_{\mathcal{D}} x_i \delta dV
$$

The mean value theorem gives the fact that $\exists c : \delta(c) = \overline{\delta}$, where $\overline{\delta} = \frac{\text{mass}(D)}{1/\overline{\delta}}$ $\frac{\text{mass}(D)}{\text{vol}(\vec{D})}$

Let $C \subseteq \mathbb{R}^n$ be a curve parameterized by $r : [a, b] \to \mathbb{R}^n$. Let $\delta : C \to \mathbb{R}_+$ be a prop 3.2 density function. Then

$$
\text{mass}(\mathcal{C}) = \int_{a}^{b} \delta(r(t)) ||r'(t)|| dt
$$

proof.

 \Box

$$
\text{mass}(\mathcal{C}) = \int\limits_{\mathcal{C}} \delta ds = \int\limits_{0}^{l} \delta(\rho(s))ds \underset{\text{ch. of var's}}{=} \int\limits_{a}^{b} \delta(r(t))||r'(t)||dt
$$

where $\rho : [0, l] \to \mathbb{R}^n$ is the arc length parameterization of C.

PROP 3.3 $\text{If } \mathcal{D} = \mathcal{C}$, a curve in \mathbb{R}^n , then the center of mass \vec{x} of \mathcal{C} with respect to $\delta: \mathcal{C} \to \mathbb{R}_+$ is given by

$$
x_i = \frac{1}{\max(S)} \int_a^b r_i(t) \circ \delta(r(t)) ||r'(t)|| dt
$$

where $r(t) = \langle r_1(t), ..., r_n(t) \rangle : t \in [a, b]$ parameterizes $C \subseteq \mathbb{R}^n$.

proof.

$$
x_i = \left(\int_C x_i \delta ds\right) \frac{1}{\text{mass}(C)} = \frac{1}{\text{mass}(C)} \int_a^b r_i(t) \circ \delta(r(t)) ||r'(t)|| dt \quad \Box
$$

VECTOR FIELDS

All curves $C \subseteq \mathbb{R}^n$ henceforth are regular and simple.

- DEF 3.7 An *orientation* on a regular, simple curve C is a continuous function $T: \mathcal{C} \to \mathbb{R}^n$ which gives the unit tangent vector to C .
- PROP 3.4 There exist exactly two orientations on $C \subseteq \mathbb{R}^n$, $T : C \to \mathbb{R}^n$ and $-T$.
- DEF 3.8 $\qquad \qquad \text{A vector field is a function } F: \mathbb{R}^n \to \mathbb{R}^n.$
- DEF 3.9 **Fix an orientation** *T* on a curve $C \subseteq \mathbb{R}^n$. The *integral* of *F* over *C* is given by

$$
\int_{C} F \cdot T ds := \int_{0}^{l} (F \circ \rho) \cdot \rho'
$$

where ρ is the arc length parameterization of \mathcal{C} .

prop 3.5 Under the conditions of [Def](#page-19-1) 3.9, we have

$$
\int_{C} F \cdot T ds = \int_{a}^{b} (F \circ r(t)) \cdot r' dt
$$

where $r : [a, b] \rightarrow \mathbb{R}^n$ is a parameterization of C.

E.G. 3.1 **← ← ● Examples ▲** Examples ▲ →

Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $F(x, y, z) = \langle 2x, 2y, 2z \rangle = 2 \langle x, y, z \rangle$. Hence, at any point, the vector generated by *F* will go through the line between the origin and that point (away).

We want to integrate over the triangle $C \subseteq \mathbb{R}^3$ bounded by $(1, 0, 0)$, $(0, 1, 0)$, $(0, 0, 1)$. We orient this path as $(1, 0, 0) \rightarrow (0, 1, 0) \rightarrow (0, 0, 1)$.

Then, we split *C* up into 3 parts (the lines traversing each point)

$$
C_1 = r_1(t) \langle 1, 0, 0 \rangle + t \langle -1, 1, 0 \rangle
$$

\n
$$
C_2 = r_2(t) = \langle 0, 1, 0 \rangle + t \langle 0, -1, 1 \rangle
$$

\n
$$
C_3 = r_3(t) = \langle 0, 0, 1 \rangle + t \langle 1, 0, -1 \rangle
$$

\n
$$
\implies \int_{C_1} \mathbf{F} \cdot \mathbf{T} ds = \int_{0}^{1} \langle 2(1 - t), 2t, 2(0) \rangle \cdot \langle -1, 1, 0 \rangle dt = \int_{0}^{1} 4t - 2dt
$$

\n
$$
= [2t^2 - 2t]_0^1 = 0
$$

By symmetry, the integral across C_2 , C_3 will be the same, i.e. $3 \cdot 0 = 0$.

3.1 Line Integrals on Gradient Fields

Let $\mathcal{U} \subseteq \mathbb{R}^n$ be open and $\varphi : \mathcal{U} \to \mathbb{R}^n$ be C^1 continuous. Let $\mathcal{C} \subseteq \mathcal{U}$ be a curve with a parameterization $r : [a, b] \rightarrow U$ and orientation *T*. Let $A = r(a)$ and $B = r(b)$. Then

$$
\int\limits_C \nabla \varphi \cdot T ds = \varphi(B) - \varphi(A)
$$

proof.

$$
\int_{C} \nabla \varphi \cdot T ds = \int_{a}^{b} \nabla \varphi(r(t)) \cdot r'(t) dt
$$
\n
$$
\stackrel{\text{CR}}{=} \int_{a}^{b} (\varphi \circ r)'(t) dt \stackrel{\text{FTC}}{=} [\varphi \circ r]_{a}^{b}
$$
\n
$$
= \varphi(r(b)) - \varphi(r(a)) = \varphi(B) - \varphi(A) \quad \Box
$$

A vector field *T* is called *unit tangent* for a curve $C \subseteq \mathbb{R}^n$ if $T = \langle T_1, T_2 \rangle$ is exactly definition the unit tangent vector to C (aka its orientation). Similarly, a vector field *n* is called *unit normal* for C if $n = \langle T_2, -T_1 \rangle$.

3.2 Jordan Curve Theorem

Let $C \subseteq \mathbb{R}^2$ be a curve. Then there exists an elementary region $\mathcal{D} \subseteq \mathbb{R}^2$ such that C is the boundary of D .

proof.

The proof of this is beyond the scope of this course.

3.3 Green's Theorem

Let $\mathcal{D} \subseteq \mathcal{U}$ be an elementary region. Fix an orientation $T = \langle T_1, T_2 \rangle$ on $\partial \mathcal{D}$. Let $F: \mathcal{U} \to \mathbb{R}^2$ be a C^1 vector field. Then

$$
\int\limits_{\partial\mathcal{D}}F\boldsymbol{\cdot} Tds=\int\limits_{\mathcal{D}}\partial_1F_2-\partial_1F_1dA=\int\limits_{\mathcal{D}}\text{curl}_2(F)dA
$$

where $\text{curl}_2 = \text{det}$ $\overline{1}$ $\begin{pmatrix} \partial_1 & \partial_2 \ F_1 & F_2 \end{pmatrix}$ *F*¹ *F*² $\overline{}$. Let $n = \langle T_2, -T_1 \rangle$. Then $\overline{1}$ $F \cdot n ds = \iint$ $\partial_1 F_1 + \partial_2 F_2 = \iint$ div2(*F*)*dA*

D

Conceptually, the curl of *F* at a point \vec{a} gives how much "spinning" is occurring about \vec{a} , and the divergence of *F* measures the tendency of nearby vectors to "move away" from \vec{a} . (Or, toward, if negative).

D

DEF 3.11 Let $\mathcal{U} \subseteq \mathbb{R}^n$ be open and $\varphi : \mathcal{U} \to \mathbb{R}^n$ be C^2 continuous. Then, if *F* is a vector field and $F = \nabla \varphi$, then *F* is called a *gradient field*.

n and *F* = $\langle F_1, ..., F_n \rangle$. A vector field *F* : ℝ^{*m*} → ℝ^{*n*} is *conservative* if $\partial_i F_j = \partial_j F_i$ ∀*i* ≠ *j* and *F* = $\langle F_1, ..., F_n \rangle$.

DEF 3.13 **An open set** $\mathcal{U} \subseteq \mathbb{R}^n$ **is called** *convex* if all line segments between points in \mathcal{U} are contained in U .

3.4 Conservative ⇐⇒ Gradient: 2*D*

∂D

Let $\mathcal{U} \subseteq \mathbb{R}^n$ be convex. Let $F: \mathcal{U} \to \mathbb{R}^2$ be a C^1 vector field. Then

F is conservative \iff *F* is a gradient field

PROOF. We show this for $m = 2$. Fix $a \in U$. For any $x \in U$, let [a, x] denote the line segment from *a* to *x* (oriented). Define $\varphi : U \to \mathbb{R} : x \mapsto \int F \cdot T ds$. [*a,x*]

We claim that $\partial_1 \varphi(x) = F_1(x)$. An identical proof for F_2 will establish $F = \nabla \varphi$.

Expanding

$$
x = \langle x_1, x_2 \rangle \implies \partial_1 \varphi(x) = \lim_{h \to 0} \frac{\varphi(x_1 + h, x_2) - \varphi(x_1, x_2)}{h}
$$

$$
= \lim_{h \to 0} \frac{1}{h} \left(\int_{[a, x + he_1]} F \cdot T ds - \int_{[a, x]} F \cdot T ds \right) \text{ by def.}
$$

$$
= \lim_{h \to 0} \frac{1}{h} \int_{[x, x + he_1]} F \cdot T ds \text{ by Green}
$$

At this point, observe that $\text{curl}(F) = \partial_1 F_2 - \partial_2 F_1 = 0$, since *F* is conservative, so consider *C* the curve bounded by $a \rightarrow x + he_1 \rightarrow x \rightarrow a$. Then

$$
\int_{[x+he_1,x]} + \int_{[x,a]} + \int_{[a,x+he_1]} = \int_{C} \mathbf{F} \cdot T ds \iint_{D} \text{curl}(\mathbf{F}) = 0
$$

Then, continuing from above:

$$
\partial_1 \varphi(x) = \lim_{h \to 0} \int_{x_1}^{x_1 + h} F_1(t, x_2) dt \stackrel{\text{FTC}}{=} F_1(x_1, x_2) = F_1(x) \quad \Box
$$

SURFACES

Let $\mathcal{D} \subseteq \mathbb{R}^2$ be an elementary region. Then $\rho : \mathcal{D} \to \mathbb{R}^3$ be called a *regular, 2D* def 3.14 *parameterization* if it is injective and $\|\partial_1 \rho \times \partial_2 \rho\| > 0$.

 $S \subseteq \mathbb{R}^3$ is called a *regular surface* if it is closed, bounded, and $\forall x \in S$, $\exists \varepsilon > 0$ such definition that $B(x, \varepsilon) \cap S$ is the image of a 2D parameterization.

If $S \subseteq \mathbb{R}^3$ is the image of a regular 2D parameterization, it is a regular surface. PROP 3.6

Let *S* be a regular surface with a parameterization $\rho: \mathcal{D} \to \mathbb{R}^3$ for some $\mathcal{D} \subseteq \mathbb{R}^2$. Then, for a scalar function $\varphi : S \to \mathbb{R}$, the integral of φ over *S* is given by

$$
\iint\limits_{S} \varphi d\sigma = \iint\limits_{D} (\varphi \circ p) ||\partial_1 p \times \partial_2 p|| dA
$$

Given a surface $S \subseteq \mathbb{R}^3$ which is path-connected, $\mu \to \mathbb{R}^3$ is called an *orientation* def 3.16 *representative* if it is continuous and $\mu(\vec{a})$ is nontrivial and normal to *S* at \vec{a}

S is *orientable* if an orientation representative exists. DEF 3.17

Two orientation representatives *μ*, *ν* for *S* are *equivalent* if $\mu(\vec{a}) \cdot \nu(\vec{a}) > 0 \ \forall \vec{a} \in S$. DEF 3.18

prop 3.7 If *S* is orientable, then it has exactly 2 distinct orientations *O* and \overline{O} , and hence two unit normal vector fields \vec{n} and $-\vec{n}$, and 2 area elements $d\sigma$ and $-d\sigma$.

DEF 3.19 $\qquad \qquad$ Fix an orientation \vec{n} on a regular surface $S \subseteq \mathbb{R}^3$, consisting of the unit normal vector field. Let $\rho: \mathcal{D} \to \mathbb{R}^3$ be its 2D parameterization. Then

$$
\iint_{S} \mathbf{F} \cdot n d\sigma = \iint_{D} (\mathbf{F} \circ \rho) \cdot (\partial_1 \rho \times \partial_2 \rho) dA
$$

where, in particular $n = \partial_1 \rho \times \partial_2 \rho$. Otherwise, dot instead with $\partial_2 p \times \partial_1 p$.

3.5 Stoke's Theorem

Let $\mathcal{U} \subseteq \mathbb{R}^3$ be open and $S \subseteq \mathcal{U}$ be a C^2 -regular surface. Let $F: \mathcal{U} \to \mathbb{R}^3$ be a *C* ¹ vector field. Fix an orientation *T* for *∂S*. Then

$$
\int_{\partial S} \vec{F} \cdot \vec{T} ds = \iint_{S} \text{curl}_3(\vec{F}) \cdot n dS
$$

where $\text{curl}_3(\vec{F})$ denotes $\nabla \times \vec{F}$, i.e.

$$
\det\begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_1 & \partial_2 & \partial_3 \\ F_1 & F_2 & F_3 \end{pmatrix} \text{ with } \vec{F} = \langle F_1, F_2, F_3 \rangle
$$

3.6 Conservative ⇐⇒ Gradient, 3*D*

Let $\mathcal{U} \subseteq \mathbb{R}^3$ be open and convex. Let $F: \mathcal{U} \setminus X \to \mathbb{R}^3$ be a C^1 vector field, where *X* is finite. Then

$$
\operatorname{curl}_3(F) = 0 \iff F = \nabla \varphi
$$

for some C^2 function $\varphi : \mathcal{U} \setminus X \to \mathbb{R}$.

We call a vector field G in \mathbb{R}^3 solenoidal if $\text{div}(G) = 0$.

3.7 Solenoidal \Longleftrightarrow curl₃ Let $\mathcal{U} \subseteq \mathbb{R}^3$ be open and convex. Let $G: \mathcal{U} \to \mathbb{R}^3$ be a C^2 vector field. Then $div(G) = 0 \iff G = curl_3(H)$ for some other C^2 vector field $H: \mathcal{U} \to \mathbb{R}^3$.

3.8 Gauss's Theorem

Let $\mathcal{U} \subseteq \mathbb{R}^3$ be open, $R \subseteq \mathcal{U}$ be elementary, and $G: \mathcal{U} \to \mathbb{R}^3$ be a C^1 vector field. Then

$$
\iint\limits_{\partial R} G \cdot nd\sigma = \iint\limits_{R} \text{div}(G) dV
$$

3.9 Stoke's Theorem For Manifolds

Let $U \subseteq \mathbb{R}^n$ be open, $S \subseteq U$ be a regular, C^2 surface. Let ω be a C^1 1-form on *U*. Then

$$
\int_{\partial S} \omega = \iint_{S} d\omega
$$

We also have the even more general form: $\; \mid$ *∂M* $\omega = \int$ *M dω*.